Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
IEEE Transactions on Engineering Management ; : 1-14, 2023.
Article in English | Scopus | ID: covidwho-2292273

ABSTRACT

In a closed-loop supply chain (CLSC), acquiring end-of-life vehicles (ELVs) and their components from both primary and secondary markets has posed a huge uncertainty and risk. Moreover, the constant supply of ELV components with minimization of cost and exploitation of natural resources is another pressing challenge. To address the issues, the present study has developed a risk simulation framework to study market uncertainty/risk in a CLSC. In the first phase of the framework, a total of 12 important variables are identified from the existing studies. The total interpretive structural model (TISM) is used to develop a causal relationship network among the variables. Then, Matriced Impacts Cruoses Multiplication Applique a un Classement is used for determining the nature of relationships (i.e., driving or dependence power). In the second phase, the relationship of TISM is used to derive a Bayesian belief network model for determining the level of risks (i.e., high, medium, and low) associated with the CLSC through the generation of conditional probabilities across 1) multi-, 2) single-, and 3) without-parent nodes. The study findings will help decision-makers in adopting strategic and operational interventions to increase the effectiveness and resiliency of the network. Furthermore, it will help practitioners to make decisions on change management implementation for stakeholders'performance audits on the attributes of the ELV recovery program and developing resilience in the CLSC network. Overall, the present study holistically contributes to a broader investigation of the implications of strategic decisions in automobile manufacturers and resellers. IEEE

2.
Socioecon Plann Sci ; : 101276, 2022 Feb 23.
Article in English | MEDLINE | ID: covidwho-2234613

ABSTRACT

COVID-19 has disrupted all spheres of life, including country risk regarding the exposure of economies to multi-dimensional risk drivers. However, it remains unexplored how COVID-19 has impacted different drivers of country risk in a probabilistic network setting. This paper uses two datasets on country-level COVID-19 and country risks to explore dependencies among associated drivers using a Bayesian Belief Network model. The drivers of COVID-19 risk, considered in this paper, are hazard and exposure, vulnerability and lack of coping capacity, whereas country risk drivers are economic, financing, political, business environment and commercial risks. The results show that business environment risk is significantly influenced by COVID-19 risk, whereas commercial risk (demand disruptions) is the least important factor driving COVID-19 and country risks. Further, country risk is mainly influenced by financing, political and economic risks. The contribution of this study is to explore the impact of various drivers associated with the country-level COVID-19 and country risks in a unified probabilistic network setting, which can help policy-makers prioritize drivers for managing the two risks.

3.
Risk Anal ; 42(1): 143-161, 2022 01.
Article in English | MEDLINE | ID: covidwho-1961885

ABSTRACT

COVID-19 has significantly affected various industries and domains worldwide. Since such pandemics are considered as rare events, risks associated with pandemics are generally managed through reactive approaches, which involve seeking more information about the severity of the pandemic over time and adopting suitable strategies accordingly. However, policy-makers at a national level must devise proactive strategies to minimize the harmful impacts of such pandemics. In this article, we use a country-level data-set related to humanitarian crises and disasters to explore critical factors influencing COVID-19 related hazard and exposure, vulnerability, lack of coping capacity, and the overall risk for individual countries. The main contribution is to establish the relative importance of multidimensional factors associated with COVID-19 risk in a probabilistic network setting. This study provides unique insights to policy-makers regarding the identification of critical factors influencing COVID-19 risk and their relative importance in a network setting.


Subject(s)
Adaptation, Psychological/physiology , COVID-19/epidemiology , Pandemics , SARS-CoV-2 , COVID-19/psychology , Global Health , Humans
5.
Corrosion Reviews ; 0(0):21, 2022.
Article in English | Web of Science | ID: covidwho-1869209

ABSTRACT

The oil and gas industry worldwide is experiencing problems of vandalism and mechanical deterioration due to corrosion in its various pipeline transport systems, a drop in the price of hydrocarbons due to the COVID-19, limitation of maintenance processes. This article provides a contribution original to the knowledge and management of a pipeline transportation system (PTS), without an immediate high impact that would help reduce property loss due to corrosion, through the development of intelligent evaluation models that combine field data, laboratory, and cognitive knowledge in a case study in Mexico. The research is divided into Part 1: modeling, a Fuzzy expert system (FES) unified the knowledge of corrosion specialists and mechanical integrity studies (MIS) and identified evolutionary corrosion patterns with reliability of 0.9029. An artificial neural network (ANN) supported by statistics and metallography establishes test reliability of 0.9556 and determines the corrosion inhibition capacity (C) of Mexican hydrocarbon mixtures based on their properties compared to carbon steel. Part 2: analysis of the operational and economic risk of the PTS under corrosive effects, using Monte Carlo simulation (MCS) estimates various financial scenarios considering corrosive profiles of soils, supply, demand, and inflation.

6.
R Soc Open Sci ; 8(9): 202218, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1429383

ABSTRACT

Drawing on risk methods from volcano crises, we developed a rapid COVID-19 infection model for the partial return of pupils to primary schools in England in June and July 2020, and a full return in September 2020. The model handles uncertainties in key parameters, using a stochastic re-sampling technique, allowing us to evaluate infection levels as a function of COVID-19 prevalence and projected pupil and staff headcounts. Assuming average national adult prevalence, for the first scenario (as at 1 June 2020) we found that between 178 and 924 [90% CI] schools would have at least one infected individual, out of 16 769 primary schools in total. For the second return (July), our estimate ranged between 336 (2%) and 1873 (11%) infected schools. For a full return in September 2020, our projected range was 661 (4%) to 3310 (20%) infected schools, assuming the same prevalence as for 5 June. If national prevalence fell to one-quarter of that, the projected September range would decrease to between 381 (2%) and 900 (5%) schools but would increase to between 2131 (13%) and 9743 (58%) schools if prevalence increased to 4× June level. When regional variations in prevalence and school size distribution were included in the model, a slight decrease in the projected number of infected schools was indicated, but uncertainty on estimates increased markedly. The latter model variant indicated that 82% of infected schools would be in areas where prevalence exceeded the national average and the probability of multiple infected persons in a school would be higher in such areas. Post hoc, our model projections for 1 September 2020 were seen to have been realistic and reasonable (in terms of related uncertainties) when data on schools' infections were released by official agencies following the start of the 2020/2021 academic year.

SELECTION OF CITATIONS
SEARCH DETAIL